Search results for "Bifurcation-type theorem"
showing 4 items of 4 documents
Positive solutions for parametric singular Dirichlet (p,q)-equations
2020
We consider a nonlinear elliptic Dirichlet problem driven by the (p,q)-Laplacian and a reaction consisting of a parametric singular term plus a Caratheodory perturbation f(z,x) which is (p-1)-linear as x goes to + infinity. First we prove a bifurcation-type theorem describing in an exact way the changes in the set of positive solutions as the parameter lambda>0 moves. Subsequently, we focus on the solution multifunction and prove its continuity properties. Finally we prove the existence of a smallest (minimal) solution u*_lambda and investigate the monotonicity and continuity properties of the map lambda --> u*_lambda.
Positive and nodal solutions for nonlinear nonhomogeneous parametric neumann problems
2020
We consider a parametric Neumann problem driven by a nonlinear nonhomogeneous differential operator plus an indefinite potential term. The reaction term is superlinear but does not satisfy the Ambrosetti-Rabinowitz condition. First we prove a bifurcation-type result describing in a precise way the dependence of the set of positive solutions on the parameter λ > 0. We also show the existence of a smallest positive solution. Similar results hold for the negative solutions and in this case we have a biggest negative solution. Finally using the extremal constant sign solutions we produce a smooth nodal solution.
Bifurcation phenomena for the positive solutions of semilinear elliptic problems with mixed boundary conditions
2016
We consider a parametric semilinear elliptic equation with a Cara-theodory reaction which exhibits competing nonlinearities. It is "concave" (sub-linear) near the origin and "convex" (superlinear) or linear near $+\infty$. Using variational methods based on the critical point theory, coupled with suitable truncation and comparison techniques, we prove a bifurcation-type theorem, describing the set of positive solutions as the parameter varies.
Parametric nonlinear singular Dirichlet problems
2019
Abstract We consider a nonlinear parametric Dirichlet problem driven by the p -Laplacian and a reaction which exhibits the competing effects of a singular term and of a resonant perturbation. Using variational methods together with suitable truncation and comparison techniques, we prove a bifurcation-type theorem describing the dependence on the parameter of the set of positive solutions.